Skewed general variable neighborhood search for the location routing scheduling problem

By Macedo, R.; Alves, C.; Hanafi, S.; Jarboui, B.; Mladenovic, N.; Ramos, B.&s

Computers & Operations Research

2015

Abstract

The integrated location routing scheduling problem is a variant of the well-known location routing problem. The location routing problem consists in selecting a set of depots to open and in building a set of routes from these depots, to serve a set of customers at minimum cost. In this variant, a vehicle can perform more than a single route in the planning period. As a consequence, the routes have to be scheduled within the workdays of each vehicle. The problem arises typically when routes are constrained to have a short duration. It happens for example within the boundaries of small geographic areas or in the transportation of perishable goods. In this paper, we propose a skewed general variable neighborhood search based heuristic to solve it. The algorithm is tested extensively and we show that it is efficient and provides the proven optimal solution in a significant number of cases. Moreover, it clearly outperforms a multi-start VND based heuristic that uses the same neighborhood structures.

RepositoriUM:

Google Scholar: