Assessment of aortic valve tract dynamics using automatic tracking of 3D transesophageal echocardiographic images

By Queir\'os, S.; Morais, P.; Fehske, W.; Papachristidis, A.; Voigt, J.-U.; Fonseca&

The international journal of cardiovascular imaging



The assessment of aortic valve (AV) morphology is paramount for planning transcatheter AV implantation (TAVI). Nowadays, pre-TAVI sizing is routinely performed at one cardiac phase only, usually at mid-systole. Nonetheless, the AV is a dynamic structure that undergoes changes in size and shape throughout the cardiac cycle, which may be relevant for prosthesis selection. Thus, the aim of this study was to present and evaluate a novel software tool enabling the automatic sizing of the AV dynamically in three-dimensional (3D) transesophageal echocardiography (TEE) images. Forty-two patients who underwent preoperative 3D-TEE images were retrospectively analyzed using the software. Dynamic measurements were automatically extracted at four levels, including the aortic annulus. These measures were used to assess the software's ability to accurately and reproducibly quantify the conformational changes of the aortic root and were validated against automated sizing measurements independently extracted at distinct time points. The software extracted physiological dynamic measurements in less than 2 min, that were shown to be accurate (error 2.2 ± 26.3 mm2 and 0.0 ± 2.53 mm for annular area and perimeter, respectively) and highly reproducible (0.85 ± 6.18 and 0.65 ± 7.90 mm2 of intra- and interobserver variability, respectively, in annular area). Using the maximum or minimum measured values rather than mid-systolic ones for device sizing resulted in a potential change of recommended size in 7% and 60% of the cases, respectively. The presented software tool allows a fast, automatic and reproducible dynamic assessment of the AV morphology from 3D-TEE images, with the extracted measures influencing the device selection depending on the cardiac moment used to perform its sizing. This novel tool may thus ease and potentially increase the observer's confidence during prosthesis' size selection at the preoperative TAVI planning.


Google Scholar: