Finding multiple roots of systems of nonlinear equations by a hybrid harmony search-based multistart method

By Ramadas, G.C.V.; Fernandes, E.M.G.P.; Rocha, A.A.C.

Applied Mathematics and Information Sciences

2018

Abstract

A multistart (MS) clustering technique to compute multiple roots of a system of nonlinear equations through the global optimization of an appropriate merit function is presented. The search procedure that is invoked to converge to a root, starting from a randomly generated point inside the search space, is a new variant of the harmony search (HS) metaheuristic. The HS draws its inspiration from an artistic process, the improvisation process of musicians seeking a wonderful harmony. The new hybrid HS algorithm is based on an improvisation operator that mimics the best harmony and uses the idea of a differential variation, borrowed from the differential evolution algorithm. Computational experiments involving a benchmark set of small and large dimensional problems with multiple roots are presented. The results show that the proposed hybrid HS-based MS algorithm is effective in locating multiple roots and competitive when compared with other metaheuristics.

RepositoriUM:

Google Scholar: