Human movement analysis using heterogeneous data sources

By Peixoto, J.; Moreira, A.

International Journal of Agricultural and Environmental Information Systems

2013

Abstract

The analysis of urban mobility has been attracting the interest of the research community recently. The research challenges in this domain are diverse and include data acquisition and representation, human movement modeling and the visualization of dynamic geo-referenced data. Some of the direct applications for these studies are urban planning, security, intelligent transportation systems and wireless networks optimization. One of the drivers for recent work in this area is the availability of large datasets representing many aspects of the urban dynamics. Quite often, the proposed approaches are highly dependent on the data type. However, the analysis of urban dynamics could benefit from the combined and simultaneous use of multiple sources of spatio-temporal data. This paper describes the definition of a set of basic concepts for the representation and processing of spatio-temporal data, sufficiently flexible to deal with various types of mobility data and to support multiple forms of processing and visualization of the urban mobility. For this purpose the authors define a set of concepts and describe how real data from heterogeneous sources is mapped into the proposed framework. Available results obtained by the integration of geometric and symbolic data reveal the adequacy of the proposed concepts, and uncover new possibilities for the fusion of heterogeneous datasets.

ALGORITMI Members

RepositoriUM:

Google Scholar: