Integrating two-dimensional cutting stock and lot-sizing problems

By Silva, E.; Alvelos, F.; Valério De Carvalho, J.M.

2014

Abstract

The two-dimensional cutting stock problem (2DCSP) consists in the minimization of the number of plates used to cut a set of items. In industry, typically, an instance of this problem is considered at the beginning of each planning time period, what may result in solutions of poor quality, that is, excessive waste, when a set of planning periods is considered. To deal with this issue, we consider an integrated problem, in which the 2DCSP is extended from the solution in only a single production planning period to a solution in a set of production planning periods. The main difference of the approach in this work and the ones in the literature is to allow sufficiently large residual plates (leftovers) to be stored and cut in a subsequent period of the planning horizon, which may further help in the minimization of the waste. We propose two integrated integer programming models to optimize the combined twodimensional cutting stock and lot-sizing problems, minimizing the total cost, which includes material, waste and storage costs. Two heuristics based on the industrial practice to solve the problem were also presented. Computational results for the proposed models and for the heuristics are presented and discussed.

RepositoriUM:

Google Scholar: