On Challenging Techniques for Constrained Global Optimization

By Santo, I.A.C.P.E.; Costa, L.; Maria, A.; Azad, M.A.K.; Fernandes&

Intelligent Systems Reference Library



This chapter aims to address the challenging and demanding issue of solving a continuous nonlinear constrained global optimization problem. We propose four stochastic methods that rely on a population of points to diversify the search for a global solution: genetic algorithm, differential evolution, artificial fish swarm algorithm and electromagnetism-like mechanism. The performance of different variants of these algorithms is analyzed using a benchmark set of problems. Three different strategies to handle the equality and inequality constraints of the problem are addressed. An augmented Lagrangian-based technique, the tournament selection based on feasibility and dominance rules, and a strategy based on ranking objective and constraint violation are presented and tested. Numerical experiments are reported showing the effectiveness of our suggestions. Two well-known engineering design problems are successfully solved by the proposed methods. © Springer-Verlag Berlin Heidelberg 2013.


Google Scholar: